1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
| import * as tf from '@tensorflow/tfjs'; import * as tfvis from '@tensorflow/tfjs-vis'; import { MnistData } from './data';
window.onload = async () => { const data = new MnistData(); await data.load(); const examples = data.nextTestBatch(20);
const surface = tfvis.visor().surface( {name: '输入示例:'} );
for (let i = 0; i < 20; i += 1) { const imageTensor = tf.tidy(() => { return examples.xs.slice([i, 0], [1, 784]).reshape([28, 28, 1]); });
const canvas = document.createElement('canvas'); canvas.width = 28; canvas.height = 28; canvas.style = 'margin: 4px'; await tf.browser.toPixels(imageTensor, canvas); surface.drawArea.appendChild(canvas);
};
const model = tf.sequential(); model.add(tf.layers.conv2d({ inputShape: [28, 28,1], kernelSize: 5, filters: 8, strides: 1, activation: 'relu', kernelInitializer: 'varianceScaling' })); model.add(tf.layers.maxPool2d({ poolSize:[2, 2], strides: [2, 2] })); model.add(tf.layers.conv2d({ kernelSize: 5, filters: 16, strides: 1, activation: 'relu', kernelInitializer: 'varianceScaling' })); model.add(tf.layers.maxPool2d({ poolSize:[2, 2], strides: [2, 2] })); model.add(tf.layers.flatten()); model.add(tf.layers.dense({ units: 10, activation: 'softmax', kernelInitializer: 'varianceScaling' }));
model.compile({ loss: 'categoricalCrossentropy', optimizer: tf.train.adam(), metrics: 'accuracy' });
const [trainXs, trainYs] = tf.tidy(() => { const d = data.nextTestBatch(5000); return [ d.xs.reshape([5000, 28, 28, 1]), d.labels, ]; }); const [testXs, testYs] = tf.tidy(() => { const d = data.nextTestBatch(200); return [ d.xs.reshape([200, 28, 28, 1]), d.labels, ]; });
await model.fit(trainXs, trainYs, { validationData: [testXs, testYs], epochs: 20, callbacks: tfvis.show.fitCallbacks( {name:'训练效果'}, ['loss', 'val_loss', 'acc', 'val_acc'], {callbacks: ['onEpochEnd']} ) });
const canvas = document.querySelector('canvas');
canvas.addEventListener('mousemove',(e) => { if(e.buttons === 1){ const ctx = canvas.getContext('2d'); ctx.fillStyle = 'rgb(255, 255, 255)'; ctx.fillRect(e.offsetX, e.offsetY, 20, 20); } });
window.clear = () => { const ctx = canvas.getContext('2d'); ctx.fillStyle = 'rgb(0, 0, 0)'; ctx.fillRect(0, 0, 300, 300); };
clear();
window.predict = () => { const input = tf.tidy(() => { return tf.image.resizeBilinear( tf.browser.fromPixels(canvas), [28, 28], true, ) .slice([0, 0, 0], [28, 28, 1]) .toFloat() .div(255) .reshape([1, 28, 28, 1]) }); const pred = model.predict(input).argMax(1); alert(`预测结果为 ${pred.dataSync()[0]}`); }; };
|